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Typical lighting systems such as incandescent and fluorescent bulbs are common 

in homes but are rather inefficient compared to the newer light emitting diodes (LEDs). 

LED-based lamps can be constructed to generate white light by combining a red, green, 

and blue LED, or by using an LED light source (typically with a low wavelength) with a 

complimentary phosphor coating to produce white light. The latter, known as phosphor-

conversion (PC) LEDs, is the primary focus of this research, looking specifically at rare 

earth-free options for these phosphor coatings.  

Anti-perovskites are a potential lattice type for this type of conversion, in 

particular the A3MO4F (A= Sr, Ba, Ca; M= Al, Ga) tetragonal structure. 

Photoluminescence has been observed in the Sr3AlO4F system upon doping with various 

lanthanides, but rare earth metals are expensive, scarce due to increased use in new 

technologies, and their mining process introduces toxins into the environment. Focusing 

on doping without rare earth metals will prove beneficial as people are becoming more
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conscientious of their carbon footprint and new dopants will lower the cost for the 

consumer.  

 Isovalent and aliovalent doping on the Sr3AlO4F lattice has been demonstrated on 

the A site (Sr), and this proven technique has introduced many rare earth trivalent cation 

ions as successful dopants. Doping on the M site (Al) is less studied but various non-rare 

earth (RE) cations such as Ga3+, Si4+, and In3+ have been incorporated on this site, 

making this site the primary focus of this thesis. The specific cations investigated are P5+, 

Y3+, and Hf4+ to expand the range of isovalent dopants and determine if aliovalent doping 

can be achieved on this site. High temperature synthesis was used to synthesize the novel 

products Sr2.5-xBa0.5Al1-xPxO4F, Sr3-xAl1-xYxO4F, and Sr!.!!!!
Ba!.!Al!!!Hf!O!F . The 

structures of these oxyfluorides were analyzed via powder X-ray diffraction (PXRD) and 

neutron powder diffraction (NPD), and their photoluminescent properties were analyzed 

through spectrofluorimetry before and after being treated under reducing conditions.  

 

KEYWORDS: Anti-Perovskite, Light Emitting Diodes, Neutron Powder Diffraction, 

Oxyfluoride, Photoluminescence, Powder X-ray Diffraction, Solid State Synthesis  
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CHAPTER I 

INTRODUCTION TO SOLID STATE LIGHTING SYSTEMS 

Early Lighting Systems 

Energy for lighting systems accounts for 22% of energy consumption in the U.S.,1 

making this a valuable area of research in helping to reduce one’s carbon footprint. 

Incandescent bulbs were the primary artificial lighting source in most homes until the 

mid-1980s. However, since light is produced due to an electric current running through a 

wire filament, this process releases a lot of heat resulting in an overall efficiency of only 

about 5%.  

The first major improvement to this bulb was the compact fluorescence light 

(CFL), which uses about 25% less energy and lasts up to 10 times longer. Various 

lighting systems such as halogen lamps and neon lights were invented when the priority 

at the time was lighting large areas, not being concerned as much with the energy 

required to generate this light. More commonly sought after now are light emitting diodes 

(LEDs), and their efficiency compared to incandescent bulbs is even greater, as they use 

20% of the energy and can last up to 25 times longer.2,3  

Other than efficiency, the toxicity of CFLs should also be of concern to the 

industry. Mercury vapor is found inside of these bulbs and is inherently toxic on a large 

scale.3 If a mercury-containing bulb is broken in your home, mercury poisoning is not of 

concern to adults if cleaned and ventilated properly due to the minute amount of mercury 
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used,but these bulbs need to be carefully handled and recycled as mercury can leak into 

the surrounding environment if they are improperly disposed of in landfills.  

 

Light Emitting Diodes (LEDs) 

While LEDs are more efficient and emit less heat than a standard CFL bulb,3 they 

commonly contain rare earth metals that are incorporated for their ability to generate 

specific colors. Rare earth metals are not intrinsically toxic, but they have been shown to 

have negative effects on certain environments with increasing concentration.4 The mining 

process for rare earth metals introduces toxic byproducts into the area that can leak into 

the water stream; an elevated concentration of some metals can affect the body’s ability 

to retain metals and elements necessary for normal bodily function.5 Also, the majority of 

rare earth metals are mined outside of the US, thus supply is potentially unreliable and, 

therefore, expensive. Being able to synthesize an LED-based bulb without rare earth 

metals would be a large step for the lighting industry for many reasons, including 

efficiency, toxicity, and overall price to the consumer.  

Inside of an LED bulb is a semiconductor die referred to as a diode. A diode is a 

two-terminal electronic component with asymmetric conductance, meaning it has low 

resistance to current in one direction and high resistance in the other. Semiconductors 

contain p-type and n-type regions, positive and negative respectively, where the dominant 

carriers are either positive holes or negative electrons. Separating these two fields is a 

charge depletion zone, shown in Figure 1.1, which is a non-conductive region at 

equilibrium. The electrons are in the conduction band and the positive holes are situated 

in the valence band, and when the p-type and n-type regions are connected to an external 
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electric field (Figure 1.2) the n-type region becomes relatively negative, and an electron 

in the n-type region can drop down into a hole in the valence band. This process emits a 

photon, and the distance between the conduction band and valence bands (the band gap) 

is directly responsible for the specific wavelength of light emitted, therefore producing 

the monochromatic color of LEDs.6 

  

Figure 1.1. A p-n junction without an applied electric field. Adapted from HyperPhysics6  

 

Figure 1.2. A p-n junction with an electrical field applied. Adapted from HyperPhysics6 

 

In 2014 Akasaki, Amano, and Nakamura were awarded the Nobel Prize in physics 

based on their synthesis of an LED that emits blue light. The diode for this blue LED is 

comprised of gallium nitride layers with varying equivalents of indium and aluminum as 

dopants.7,8  Figure 2 shows the emission spectra for an In1-xGaxN LED, and when x is 

increased from 0.0 to 0.45 the wavelength of light emitted is also increaasing.9 The 

change in wavelength from the UV region to the green region (through the IR region with 
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the appropriate dopant ions) is important to note so these LEDs can be tuned to a variety 

of wavelengths to fit the needs of the consumer.  

 

Figure 2. Emission spectrum of In1-xGaxN LED (0 ≤ x ≤ 0.45). Reproduced from Ronda9  

 

Red and green LEDs, which have existed for many years prior, are primarily 

comprised of gallium arsenide phosphide10 and gallium phosphide11 respectively, 

although the exact composition varies due to variations in industrial processes and 

desired wavelength of light in the finished product. One way to produce artificial white 

light is through an RGB LED, which is a combination of red, green, and blue LEDs that 

gives the illusion of a white light. The primary issue with RGB bulbs is that the three 

different materials degenerate at different rates, decreasing the quality and usefulness of 

the light as time goes on.  

Another way to generate white light is with PC-LEDs. Such devices use an LED 

light source combined with a phosphor coating that absorbs the wavelength emitted by 

the LED and emits a different wavelength via downconversion. Phosphors act as energy 



www.manaraa.com

 
 

5 

converters, absorbing energy at one wavelength and emitting at another. 

Downconversion, also referred to as a Stoke’s shift, is when an emitted photon has less 

energy than the absorbed photon, thus a higher wavelength. Upconversion, or an anti-

Stoke’s shift, is when the emitted photon has a lower wavelength than the absorbed 

photon.12 Figure 3 demonstrates a Stoke’s and anti-Stoke’s shift as would be seen from 

an emission spectrum. Being able to tune the composition of these phosphors allows for 

Stoke’s or anti-Stoke’s shifts to be intentionally induced to cater to a particular 

application.  

 

Figure 3. Stoke’s shift and anti-Stoke’s shift. Reproduced from Simon12  

 

Typically, a blue light and a yellow phosphor coating are used to generate white 

light; a mixture of red and green phosphors or any pair of complimentary colors would 

have the same net effect. Figure 4 is a simple representation of how a PC-LED bulb 

works and appears to the human eye, where the light from a blue LED interacts with 

yellow phosphor grains to generate a green-yellow emission. However, these grains do 
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not absorb all of the blue light, so the net effect of blue and green-yellow emissions 

yields a white light.13  

 
Figure 4. Representation of the inside of a PC-LED. Reproduced from Huang14 

 

Photoluminescence 

Luminescence is the emission of light by a material after it has absorbed non-heat 

energy. There are many types of luminescence and they are characterized by their 

excitation source: chemiluminescence, which encompasses bioluminescence, produces 

light due to a chemical reaction; photoluminescence, on the other hand, uses light as an 

excitation source, typically a UV light. Photoluminescence can further be broken down 

into two types, fluorescence and phosphorescence, which are dependent on the time lapse 

between excitation and emission. Fluorescence describes emissions where the 

luminescence stops as soon as the excitation source is removed, such as turning off a light 

bulb; phosphorescence refers to emissions that continue long after the excitation source 

has been removed, as seen in glow-in-the-dark materials.  

The valence band is the highest occupied orbital, and the conduction band is the 

first unfilled orbital. When an electron is excited into an empty conduction band and 
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relaxes back down to the ground state the energy is released as a photon with a specific 

wavelength, hence photoluminescence is observed. This specific wavelength is what is 

responsible for the color emission seen. The path length between the conduction band and 

valence band is what results in the specific color. Figure 5 shows the electronic 

transitions for three lanthanides commonly used in PC-LEDs.  

 

Figure 5. Electronic transitions of common rare earth metals found in LEDs. Adapted 
from Hasegawa15 

 

The visible light spectrum ranges from 380-750 nm, where the lower wavelengths 

(λ≈ 380-495 nm) correspond to a purple-blue color, green has an emission range of 495-

570 nm, and yellow to orange then red correspond to increasing the wavelength from 570 

to 750 nm. White light can be generated either by combining all of the wavelengths of 

visible light or by mixing complimentary colors, as discussed for RGB-LEDs and PC-

LEDs. Figure 6 shows the emission spectra of daylight compared with white light 
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emission from different light sources. The net effect of white light remains constant but 

its composition can vary; for instance daylight has a broad emission compared to that of 

different light bulbs, where CFL specifically shows line emissions. These line emissions 

arise from the rare earth dopants used in the phosphor coating, increasing the tunability of 

the light but decreasing the overall efficiency.  

 

Figure 6. Emission spectra of various light sources. Adapted from Popular Mechanics16 

 

A broad emission is seen when electronic states of an activator ion strongly 

interact with vibrational modes of the host lattice. In the case of Figure 6, the LED shows 

a broad emission, which is desirable because it most closely resembles that of natural 

light. Line emissions are where energy levels of an activator only show weak interactions 

with the host lattice; doping with rare earths leads to strong line emissions. These line 
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emissions are tailored around red, green, and blue wavelengths (610, 540, and 450 nm 

respectively) since the human eye is not equally sensitive to all colors.  

 

Quantifying Color 

RGB LEDs and PC-LEDs can be engineered to generate a white light, but their 

spectral distributions are not the same as daylight. There are many ways a light source 

can look or feel, which in turn affects what purposes it can be used for. One way to 

quantify the quality, or usefulness, of an artificial light source is by how well it mimics 

natural light. The color rendering index (CRI) describes how well a light source mimics 

natural light by comparing the colors of an object under artificial and natural light. CRI is 

scored on a 0-100 scale, where 100 is equivalent to natural light. Fluorescent lamps 

appear white, but have a relatively low CRI due to the small emission of red and green, 

causing an uneven spectral distribution. Fluorescent lamps’ CRI values typically top out 

around 75, but the improved upon CFLs have a greater CRI value as high as 95.1 The red, 

green, and blue emissions are line emissions as opposed to a broad emission, so although 

the light appears white it may be less comfortable to the human eye due to the less than 

desirable CRI. Figure 7 shows colored pencils under various light sources with differing 

CRI values. Moving from left to right, it is clear that as the CRI value approaches 100 the 

colors look more accurate, and thus more appealing. This speaks to the importance of the 

tunability of LEDs to not only produce white light but one that mimics natural light.  
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Figure 7. Increasing CRI value and the effect on color reproducibility. Reproduced from 

MDidea17 
 

In 1931 the Commission Internationale de l'Eclairage (International Commission 

on Illumination, CIE) created the CIE 1931 color space, Figure 8, which reduces RGB 

tristimulus values to an x and y coordinate system to help mathematically quantify colors. 

By connecting any two points on the CIE graph, any color on that line can be produced 

by varying amounts of the two starting colors. This is particularly useful for designing 

white light emitting devices because if the line passes through the white area, as possible 

between blue and yellow, then a light that appears white to the human eye can be 

generated. Upon collecting photoluminescent data, the CIE coordinates of x and y can be 

calculated and plotted on the CIE graph.  
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Figure 8. CIE 1931 color space. Reproduced from Guild18  

 

The color of light can be quantified mathematically, but light can also have a 

certain feel. Light can feel “warm” or “cool” and is quantified with the correlated color 

temperature (CCT) scale. CRI and CCT are independent of one another, but work 

together to accurately describe the quality of light in question. The CCT is the 

temperature at which an ideal black body radiator emits a color that is comparable to the 

light source in question, as far as human color perception is concerned. As materials are 

heated to temperatures of ~1500 K, they appear “warm” or red, like embers of a fire. 

When this temperature increases to ~6000 K, the material has less of a color hue and 

appears white. This white color can be quantified as warm/cool, but this scale would also 

include other whites like daylight or a bright white. At temperatures of ~9000 K these 
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materials appear “cool” or blue, like the sky. The CCT scale is shown in Figure 9 where 

cooler light appears blue and is beneficial for studying or working, but warmer light 

appears red and seems more relaxing making warm whites preferred in many homes.19  

 

Figure 9. Correlated color temperature scale. Adapted from Smart Energy19 

 

PC-LED devices can be tuned for the specific emission desired by the consumer 

by either changing the composition of the phosphor coating or the LED. The aim of this 

thesis is to investigate novel phosphors to work with blue/UV LEDs to generate a white 

light. These phosphor coatings are typically synthesized through high temperature solid-

state reactions; this type of reaction between two or more solids completely disrupts their 

structure, resulting in the formation of a new, non-molecular, crystalline solid.  

 

Crystal Structures 

A crystal lattice can be formed from the repetition of a unit cell, which is the 

smallest group of atoms that has the overall symmetry of a crystal of that substance. A 

cubic crystal system is the simplest, where all of the sides are equidistant and all corners 

are right angles, but Figure 10 shows all seven unique crystal systems. The seven crystal 

systems can all possess different symmetry elements, referred to as point groups, and 

each point group helps describe a mirror plane, glide plane, or other symmetry element 

present in the structure.73  
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Figure 10. Visualization of the seven unique crystal structures. Adapted from Smart73  

 

Along with the seven crystal systems there are four lattice types: primitive (P), 

with a lattice point at each corner; body-centered (I), with a lattice point at each corner 

and one in the center of the cell; face-centered (F), with a lattice point at each corner and 

one at the center of each face; and side-centered (A, B, or C), with a lattice point at each 

corner and one at the center of a pair of opposite faces.73 Combining the seven crystal 

systems and four lattice types gives rise to 14 Bravais lattices, shown in Figure 11.  
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Figure 11. Visual representation of the 14 Bravais lattice types. Adapted from Smart73  

 

 Combining the 32 point groups with the 14 Bravais lattices allows for 230 

different space groups describing all possible crystal symmetries. Space groups are 

reported in Herman-Mauguin notation, which simply indicates the type of lattice and 

symmetry elements present.73 Using one of the most common space groups as an 

example, P21/c would imply a primitive unit cell with a 21 screw axis that is orthogonal 

(at a right angle) to a c glide plane.  
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Perovskites and Anti-Perovskites 

An ideal perovskite structure is described as a cubic crystal system with a 

primitive lattice type, as seen in Figure 12.1. The general formula is ABX3, where A is a 

large body-centered cation and B is a small cation that is octahedrally coordinated to X, 

which is an anion positioned on the edges resulting in BX6 corner-linked octahedra. 

Typically A is an alkaline earth metal, B is another metal cation (such as a transition 

metal), and X is oxygen.  

 

Figure 12.1. An ideal cubic anti-perovskite. Adapted from Green20   

 

The mineral named perovskite, CaTiO3, was first believed to exhibit a cubic 

crystal system and is modeled in Figure 12.2. This is a different view of the unit cell, 

where the BX6 octahedra is at the origin of the unit cell (TiO6), and Ca (A) is in blue on 

each of the corners.  
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Figure 12.2. Unit cell of an ABX3 perovskite. Reproduced from Pfaff21 

 

It was later discovered that CaTiO3 is orthorhombic, not cubic. Distortions arise 

as different elements are introduced to the compound that can change the general shape 

of the system, primarily due to the ion size. To quantify these distortions, the 

Goldschmidt tolerance factor22 (t), equation 1, can be used to predict the structure based 

on the ion sizes, where RA, RB, and RX are the ionic radii for the ions in a structure with a 

ABX3-type formula:  

𝑡 = !!!!!
!(!!!!!)

   

Equation 1. Goldschmidt tolerance factor 

 

In the case of CaTiO3, the t value is calculated as 0.896, suggesting that the 

crystal is not a perfect perovskite: a t value greater than 1.01 suggests a hexagonal 

perovskite; between 0.9-1.01 suggests a cubic perovskite; 0.75-0.9 suggests an 

orthorhombic, rhombohedral, or tetragonal perovskite; if this value is under 0.75 the 

crystal is no longer classified as a perovskite. The t value is close to that of a cubic 
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perovskite, indicating that the Goldschmidt tolerance factor is a general guideline, not a 

determining factor. Other characterization techniques need to be taken into consideration 

for an exact determination of the crystal structure. By increasing or decreasing the size of 

the A and B cations, the cell parameters will change accordingly. A typical cubic 

perovskite, such as SrTiO3, has ideal cation sizes for a cubic shape, but as the size of the 

A cation increases or the B cation decreases, the structure becomes hexagonal as seen in 

BaNiO3.23 Orthorhombic structures, such as the aforementioned CaTiO3, arise when the A 

cation is too small to fit into the B interstices.  

“Anti” structures are those where the cation and anion positions have been 

switched. Anti-perovskites, have the general formula X3AB where X is a cation positioned 

on the edges, A is a large anion located at the body center, and B are the small anions on 

the corners, forming corner-linked anion-centered BX6 octahedra.  

 

Structural Defects 

An ideal crystal system repeats the unit cell with uniform spacing and no defects; 

however, that is almost never the case. Only at absolute zero can a perfect crystal exist 

because they become imperfect at real temperatures due to atomic vibrations. These 

structural defects exist in crystals in many ways, either at just one point in the lattice or 

throughout the entire lattice.  

There are two types of point defects, intrinsic and extrinsic. Intrinsic defects are 

stoichiometric in nature and the composition of the crystal is unchanged; these intrinsic 

defects can be categorized further as Schottky or Frenkel defects. A Schottky defect is 

where an ion is removed from its lattice site, leaving a vacancy. Schottky defects always 

lead to two vacancies, an anion and a cation vacancy, thereby preserving the 
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electroneutrality of the crystal. Additional ions on the surface of the compound preserve 

its stoichiometry. Frenkel defects are formed when an ion is displaced from its lattice site 

into an interstitial site that is normally empty. Due to the way materials crystalize and 

pack, there are “holes” or open spaces in the structure, allowing a cation to fit in this 

space. Anion Frenkel defects are possible, however, they are less common since the 

anions are typically larger than the cations in a given structure.73 Figure 13 shows these 

two defects where C+ indicates the cations, A- indicates the anions, and V is any created 

vacancies.  

 
Figure 13. Representation of Schottky and Frenkel defects. Adapted from Smart73 

 

Extrinsic or non-stoichiometric defects are commonly caused when the compound 

has a composition where the ratio of atoms is not an integer, as is the primary case when 

doping samples in this thesis. Stoichiometry is never perfect at the local level so extrinsic 

defects exist to some extent in all crystal structures. When doping with an aliovalent ion, 

vacancies are created to compensate for the difference in charge. For example, when 

doping with 0.1 equivalents of P5+, one would not expect the compound Sr3Al0.9P0.1O4F 

to form because it would not be charge neutral and would therefore be unstable. One 

would predict the composition Sr2.9Al0.9P0.1O4F, where the amount of Sr2+ in the 
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compound has been reduced to compensate for the charge of this aliovalent substitution, 

creating strontium cation vacancies.  

Another way to dope with aliovalent elements without creating vacancies is by 

co-doping with another ion to charge compensate. Commonly seen when doping on the 

Sr2+ site with a trivalent cation such as Ce3+, Na+ is introduced to help balance the charge 

of the compound. For example, doping on the Sr3AlO4F structure with 0.1 equivalents of 

both Ce3+ and Na+ leads to the formula Sr2.8Ce0.1Na0.1AlO4F which has a neutral charge 

without the need for vacancies.24 All crystal structures contain some sort of defect, so it is 

important to carefully consider the effects of aliovalent substitution on stoichiometry and 

defect creation so as to minimize the formation of impurities through making minor 

adjustments to the formula. 

 

Important Phosphor Materials 

Yttrium aluminum garnet (Y3Al5O12, commonly abbreviated as YAG) is a cubic 

crystal that is typically colorless, but the color of the crystal can exhibit a wide array of 

colors when doped with various elements. This large unit cell (Ia3d) is shown in Figure 

14 with the top layer showing the AlO4
5- and AlO6

7- polyhedra and just one of the YO8
13- 

polyhedra near the bottom.25 This structure is commonly doped with Ce3+ and is used as a 

phosphor coating to produce white light in conjunction with the InxGa1-xN blue LED.26 

When the YAG:Ce3+ phosphor is excited at a wavelength of 460 nm (the emission range 

of the InGaN LED9), this leads to a broad emission spectra from 500-700 nm with a 

maximum at 540 nm. This PC-LED is currently one of the best light bulbs of its type on 
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the market despite having a CRI value of ~70-80;27 the CRI value is not as high as other 

bulbs due to the lack of red spectral emissions.  

 
Figure 14. Unit cell of Y3Al5O12 showing the three distinct polyhedra. Reproduced from 

Huang.14  
 

Another phosphor closely related to YAG is Ca3Sc2Si3O12:Ce3+. When this cubic 

phosphor (Ia3d) is excited at 450 nm it exhibits a broad emission band at ~505 nm that 

results in a yellow-green photoluminescent emission. When this phosphor is used in 

conjunction with CaAlSiN3:Eu2+ in the phosphor coating for a blue LED an overall 

emission is seen from 500-650 nm. This PC-LED has a CRI value of 92, making it 

another desirable option for solid state lighting systems.28,29  

Magnesium germinate, Mg2GeO4:Mn4+, was first synthesized in 1936 by 

Leverenz.30 This olivine phosphor (Pmnb), when doped with excess amounts of 

magnesium, causes the composition to change to Mg3.5Ge1.25O6:Mn4+ 
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(Mg28Ge10O48:Mn4+), slightly changing the space group to Pbam.31-33 When excited at 

365 nm, this material shows four emission peaks between 620-660 nm, yielding a red 

emission.34 The magnesium germanate phosphor was commonly used as a coating for 

mercury bulbs in streetlights from the 1950-70s. The typical red emission appeared to 

have a yellow hue, but even when the phosphor would degrade, the emission appeared 

orange which still made it a viable option for street lighting.26   

This compound can be further co-doped with zinc, which plays a major role in the 

emission spectra exhibited.34 As more Zn2+ is incorporated for Mn4+ the emission shifts 

from a red color, to orange, and then to yellow. Mg28Ge10O48:Mn4+ can also be doped 

with MgF2, and this synthesis produced the first oxy-fluoride phosphor, 

Mg3.5Ge0.9375O4.75F1.25 (Mg28Ge7.5O38F10).35,36 The addition of fluorine does not change 

the structure of the compound, but is useful as it increases the efficiency of the phosphor.  

 

Strontium Aluminum Oxy-fluoride, Sr3AlO4F 

This thesis focuses on the anti-perovskite with a general formula of A3MO4F, 

where MO4 is the body-centered polyanion AlO4
5- tetrahedron and the primary position 

for doping experimentation. Figure 15.1 shows the tetragonal anti-perovskite related 

structure (I4/mcm) of A3MO4F (A= Sr; M= Al), where the Sr(1) and (2) sites are labeled 

accordingly, and the blue spheres are the M site atoms tetrahedrally coordinated to the red 

oxygen atoms, and the yellow spheres on the corner of the cell are the fluorine atoms. 

The fluorine atoms are coordinated to the strontium atoms on both the Sr(1) and Sr(2) 

sites forming corner-linked FSr6 octahedra (transparent green) on the corners of the cell. 

Strontium is also coordinated to the MO4 tetrahedra (transparent blue) via the oxygen 
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atoms. Figure 15.2 is the same crystal structure but outlines the unit cell; Table 1 lists the 

bonds present in the Sr3AlO4F anti-perovskite.37  

  

Figure 15.1. Structure of Sr3AlO4F 37 
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Table 1. Coordination of the Atoms in the Sr3AlO4F Anti-Perovskite37 

Primary Atom [Number of] Bonds Formed 
Sr(1) 8 x Sr(1)-O 

 2 x Sr(1)-F 
Sr(2) 4 x Sr(2)-O [long] 

 2 x Sr(2)-O [short] 
 2 x Sr(2)-F 

Al 4 x Al-O 
O 2 x Sr(2)-O [long] 
 1 x Sr(2)-O [short] 
 2 x Sr(1)-O 
 1 x Al-O 

F 4 x Sr(2)-F 
 2 x Sr(1)-F 

 

 

Figure 15.2. Unit cell of the Sr3AlO4F crystal37  
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Substituting the larger barium cation onto the Sr(1) site leads to greater stability 

as the Sr2+ cation is rather small for the 10-coordinate site. Conversely, doping with the 

smaller Ca2+ cation allows for more space in the cell when doping with large rare earth 

metals on this site. This was shown through the calculation of the bond valence sums 

which will be discussed in further detail in Chapter III, Profile Refinement when talking 

about calculations performed with these materials.38   

Sr3AlO4F is not photoluminescent but can be doped with rare earth activators to 

form characteristic line transitions. Post-synthesis, phosphor materials can be treated with 

a reducing gas to induce anion defects, such as 5%H2(g)/95%Ar(g) while heating at 900 

°C, which leads to the formula Sr3AlO4-αF1-δ. Upon annealing under reducing conditions 

to form Sr3AlO4-αF1-δ, the host lattice becomes self-activating giving a broad emission. As 

seen in Figure 16.1-16.239, reducing the Sr2.85Eu0.1Al0.9In0.1O4F phosphor results in 

Sr2.85Eu0.1Al0.9In0.1O4-αF1-δ which impacts the observed photoluminescence by adding a 

broad underlying emission. In Figure 16.1 the emission spectrum is rather weak when 

excited at 365 nm; however, when excited at 290 nm, the emission is comprised of 

characteristic Eu3+ line emissions. After being reduced, the photoluminescence is not 

affected when excited at 290 nm, but when excited at 365 nm the photoluminescence also 

includes a broad emission.39 Being able to induce anion defects that lead to a broad 

spectral distribution is useful for phosphors in solid state lighting systems by increasing 

the intensity of a wide range of wavelengths and resulting in a higher CRI value. 
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Figure 16.1. Excitation and Emission of Sr2.85Eu0.1Al0.9In0.1O4F (not reduced). Adapted 

from Park39 
 

 
Figure 16.2. Excitation and Emission of Sr2.85Eu0.1Al0.9In0.1O4-αF1-δ (reduced). Adapted 

from Park39  
 

Trivalent lanthanides have been successfully incorporated onto various host 

lattices to induce photoluminescence. When looking specifically at the Sr3AlO4F cell 

(A3MX), numerous lanthanide cations have been doped on the A site to induce 

photoluminescence via characteristic line emissions. Figure 17 shows the CIE diagram 

for general trends from doping on the Sr3MO4F host lattice. The rare earths used are 
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terbium, thulium, and europium, and through varying the concentrations of these rare 

earths different emissions and subtle distortions to the host lattice are seen. 

Understanding the tunability of the excitation and emission shift with the introduction of 

various dopants is important to the solid state lighting industry.40  

 
Figure 17. CIE diagram of various rare earth dopants on Sr3MO4F. Reproduced from 

Shang40  
 

When doping on the Sr2+ site with the aliovalent Ce3+ cation, Sr2+ cation 

vacancies will form. To avoid these defects the Na+ cation is co-doped at the same 

concentration as Ce3+ to maintain the electroneutrality of this compound.24 

Sr2.98Ce0.01Na0.01AlO4F shows an emission at ~484 and 512 nm when excited at 404 and 

440 nm respectively. As the concentration of Ce3+ (and Na+) is increased from x= 0.01 to 

x= 0.20 the excitation at λ= 404 nm increases the emission wavelength to 550 nm. Figure 

18 shows the CIE coordinates for various Sr3−2xCexNaxAlO4F compounds, showing the 

tunability of this phosphor and the effect that increasing concentrations of a rare earth 

y	
  

x	
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metal has on photoluminescence.24  

 

 
Figure 18. CIE graph of Sr3−2xCexNaxAlO4F as [Ce3+] is increased. Reproduced from 

Chen24 
 

Similar to doping with Eu3+, doping with Sm3+ results in a red emission, but this 

emission changes when synthesized under reducing conditions. Figure 19 shows the 

tunability of Sr!.!!!!! Ba!.!Sm!AlO!F  when excited at 254 nm when x is increased from 

0.001 to 0.1 [A-D], but also plotted [E-H] are the same concentrations after being 

reduced (Sr!.!!!!! Ba!.!Sm!AlO!!!F!!!). Excitation at 408 nm emits a wavelength in the 

red-orange region, but the emission shifts towards white after being reduced.41 

x	
  
y	
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Figure 19. CIE graph of various Sr2.5-3x/2Ba0.5SmxAlO4F compounds, under normal and 

reduced synthesis conditions [A-D, E-H]. Reproduced from Park41 
 

M-Site Doping 

Doping on the A-site in the Sr3-xAxAlO4F (A= Ba, Ca, RE) compound has been 

well studied, yet doping on the M-site is not as widely reported. For this specific anti-

perovskite, the M-site consists of some metal (M) bonded to four oxygen atoms forming a 

tetrahedron. Sr3MO4F was first synthesized by Vogt et al. in 199937 with Al and Ga on 

the M site individually, and both the Sr3AlO4F and Sr3GaO4F phosphors are 

photoluminescent when synthesized under reducing conditions.38 When excited at a 

wavelength of 254 nm, Sr3AlO4-αF1-δ shows a blue-white emission, while Sr3GaO4-αF1-δ 

appears yellow-white.42 

Isovalent doping on the M-site in the Sr3AlO4F phosphor has also been 

successfully reported with In3+, showing promise for doping with non-rare earth metals.43 
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Partial doping with In3+ on the Al3+ site in this host lattice has been shown to induce 

photoluminescence. Specifically, the compound Sr2.4Ba0.6Al0.9In0.1O4-δF1-δ produces a 

broad emission band around 590 nm when excited at a wavelength between 365-372 nm. 

This results in a yellow emission, which could be paired with the InxGa1-xN based blue 

LED for the production of a white light. Further doping with the Eu3+ lanthanide has been 

shown to affect the photoluminescence. When introduced in 0.1 equivalents on the Sr(2) 

site, yielding Sr2.85Eu0.1Al0.9In0.1O4-αF1-δ, this results in an orange emission around 619 

nm with the same excitation of 365 nm.  

Aliovalent doping on the M-site has been successfully reported with Si4+ up to 0.5 

equivalents, and also while co-doped with various trivalent lanthanides including Ce3+, 

Tb3+, Gd3+, and La3+.44,45 When charge compensation was necessary when introducing 

rare earth metals to the compound Sr3Al1-xSixO4+xF1-x this was done with Li+, as opposed 

to Na+ as seen previously. The emission is centered ~531 nm for all of the samples when 

excited at 430 nm, but the emission was greatest when doped with Ce3+ at 0.025 

equivalents. Si4+ is smaller than Al4+ (0.26 Å and 0.39 Å, respectively),46 but the expected 

space group is present (I4/mcm), and this gives rise to doping on the M-site with an 

aliovalent cation. 

Si4+ and Ge4+ are relatively similar in size (0.26 Å and 0.39 Å, respectively)46  

but when increasing the concentration of Ge4+ in the compound 

Sr!.!"!!!
Na!.!"Ce!.!"Ga!!!Ge!O!F,  the values for the global instability index varied 

inconsistently.43 This could indicate that Ge4+ was not going into the structure, at least as 

readily as Si4+, but major germanium containing impurities were not reported. It was 
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reported, however, that the photoluminescent properties of these compounds were not as 

great as those was reported for Si4+.43   

The CIE color space for a few of the aforementioned compounds is shown in 

Figure 20. Doping with In3+ is indicated by the one “In” point because the coordinates for 

the two compounds overlap.47 In addition the “Si” is plotted, but when used in 

combination with an InGaN light source, the overall emission is very close to the 

theoretical white point (x=y= 0.33).45 Also plotted on this CIE color space are where the 

reduced undoped Sr3AlO4-αF1-δ and Sr3GaO4-αF1-δ host lattices would appear. Al3+ and 

Ga3+ appear close to one another, but this is a base point for the tunability of compounds 

using these cations for the M-site. The Ge4+ doped compounds had CIE coordinates 

between the Al/Ga plots, but, as mentioned, the PL properties were not as good as when 

doping with either Si4+ or In3+. If a green phosphor was being sought, Ga3+ would be the 

best starting material; where as if Al3+ was used it would result in phosphors with more of 

a blue emission.  
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Figure 20. CIE color space of Sr2.4Ba0.6Al0.9In0.1O4-δF1-δ, Sr3-2xCexLixAl0.5Si0.5O4.5F1.5,  

Sr3AlO4-αF1-δ, and Sr3GaO4-αF1-δ 43,47,38,41  

 
Another oxyfluoride, Na2CaPO4F, shows a green emission when doped with 0.02 

equivalents of Eu2+. This rhombohedral phosphor (R3m) has a broad emission band 

centered at 506 nm when excited between 250-450 nm. In conjunction with a blue-

emitting and red-emitting phosphor, a white LED was produced with CIE coordinates of 

x= 0.332, y= 0.365, a CCT value of 5540 K, and a CRI of 90.48 Though the PL properties 

may be related to the doping with Eu2+, the successful synthesis of PO4
3- polyhedra 

through solid state synthesis of a related anti-perovskite system lead to the use of P5+ as a 

dopant on the Sr3AlO4F material to tune the CIE values.  

When doping on the Al3+ M-site, the isovalent Y3+ cation would not require the 

formation of any structural defects, sparking interest for its use as a dopant. Yttrium was 

also chosen as a dopant of interest because of the photoluminescent properties seen from 
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YAG,14 however, a structure with the YO4
5- polyhedra has not yet been reported. Y3+ is, 

however, a much larger cation than Al3+ (0.90 Å and 0.39 Å, respectively),46 so steric 

hindrances may be of concern for this dopant.  

Hf4+ was also chosen as a dopant of interest on the M-site, although this does 

require the formation of structural defects. This Hf4+ cation sparked interest as it would 

allow for analysis of 3+, 4+, and 5+ dopants (yttrium, hafnium, and phosphorus, 

respectively). As stated previously Si4+ has been shown to incorporate on the M site, so it 

is hypothesized that Hf4+ should also incorporate. There is a relatively small increase in 

size between the Hf4+ and Al3+ ions (0.58 Å and 0.39 Å, respectively)46 that should not 

result in any steric hindrances; however, Hf4+ is twice as large as Si4+ (0.26 Å),46 so any 

additional strain on this compound may not allow for formation as hypothesized. 
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CHAPTER II 

HIGH TEMPERATURE SYNTHESIS OF ANTI-PEROVSKITE  

RELATED COMPOUNDS 

Solid State Synthesis 

Solid state synthesis can be carried out in a variety of ways, the most common of 

which is the ceramic method. The ceramic method works on the principle of overcoming 

each of the starting material’s lattice energies to form a new structure, something that is 

accomplished through long reaction times at high temperatures. When the starting 

materials are combined together there is a certain amount of contact between the different 

crystal faces referred to as the interface. At high temperatures these crystals start to 

overcome their lattice energies and ions begin to migrate across the interface that starts to 

form the new crystal, a process known as nucleation. When the reaction occurs a product 

layer is formed between the reactants making it harder for ions to migrate through the 

new structure, but intermittent grinding creates new interfaces to aid in nucleation. 

Pressing the powders into a pellet also allows for more surface interaction to minimize 

the diffusion distance of the ions.  

 

Solid State Reactions Incorporating Phosphorus on the M-Site 

The basis for my synthetic design was modeled from the original synthesis of the 

Sr3AlO4F anti-perovskite by Park and Vogt.39 Stoichiometric amounts of the dry and pure 

starting materials were used: strontium carbonate (SrCO3, 99.9%); strontium fluoride  
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(SrF2, 99%); aluminum oxide (Al2O3); ammonium phosphate dibasic ((NH4)2HPO4). 

After weighing the starting materials they were ground together with an agate mortar and 

pestle for five to 10 minutes or until a homogeneous powder was observed. Following 

reaction times of 12-16 hours at 700, 800, and 900 °C, then 48-72 hours at 1050 °C for up 

to three times with intermittent grinding before each heating, the compound  

Sr3-xAl1-xPxO4F (0 ≤ x ≤ 0.1) was successfully synthesized. The synthesis conditions are 

adjusted according to the purity of the sample, as determined by a powder X-ray 

diffractometer (PXRD), and how receptive the materials are to heating at such high 

temperatures. Scheme 1 is the reaction for the first material of interest, doping on the 

aluminum site with phosphorus.   

2.5-x SrCO3 + 0.5 SrF2 + !!!
!  Al2O3 + x (NH4)2HPO4 à Sr3-xAl1-xPxO4F 

Scheme 1. Synthesis of Sr3-xAl1-xPxO4F 

 

The AlO4
5- tetrahedra are being doped with an aliovalent cation, which causes a 

strontium cation defect, as discussed previously in Chapter I, Structural Defects. To 

reduce the amount of structural defects in the final compound, the stoichiometric amounts 

of starting materials are adjusted appropriately, as seen in Scheme 1, where the 

stoichiometric amount of strontium carbonate accounts for the amount of dopant 

introduced.  

Introducing barium onto the strontium site has been shown using bond valence 

sum calculations by Prodjosantoso et al. to improve the stability of the structure.38 

Appropriate amounts of barium carbonate (BaCO3) were used in this reaction. The anti-
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perovskite was synthesized without Ba2+ for initial analysis but all other syntheses 

included 0.5 equivalents of Ba2+ as shown in Scheme 2. 

2-x SrCO3 + 0.5 BaCO3 + 0.5 SrF2 + !!!
!

 Al2O3 + x (NH4)2HPO4 à Sr2.5-xBa0.5Al1-xPxO4F 

Scheme 2. Synthesis of Sr2.5-xBa0.5Al1-xPxO4F 

 

Solid State Reactions Incorporating Yttrium on the M-Site 

Y3+ and Al3+ are isovalent, so doping with yttrium should not require the 

formation of any extrinsic defects. Scheme 3 shows the synthesis of Sr3Al1-xYxO4F (0 ≤ x 

≤ 1). Stoichiometric amounts of the dry and pure starting materials were thoroughly 

ground together using an agate mortar and pestle: strontium carbonate (SrCO3, 99.9%); 

strontium fluoride (SrF2, 99%); aluminum oxide (Al2O3); yttrium oxide (Y2O3, 99.99%). 

Following reaction times of 12-16 hours at 700, 800, and 900 °C, then 48-72 hours at 

1050 °C for up to three times with intermittent grinding before each heating, the 

compound Sr3Al1-xYxO4F (0 ≤ x ≤ 1) was synthesized. The synthesis conditions are 

adjusted according to the purity of the sample and how receptive the materials are to 

heating at increasingly high temperatures. Similar to Scheme 1 for the P5+ doped 

syntheses, the larger barium cation was not included in these reactions due to the large 

size of the Y3+ ion. 

2.5 SrCO3 + 0.5 SrF2 + !!!
!

 Al2O3 + !
!
 Y2O3 à Sr3Al1-xYxO4F 

Scheme 3. Synthesis of Sr3Al1-xYxO4F 
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Solid State Reactions Incorporating Hafnium on the M-Site 

Similar to the phosphorus doping experiments, structural defects are required due 

to the aliovalent nature of Hf4+ and Al3+. Scheme 4 shows the synthesis of  

Sr2.5-x/2Ba0.5Al1-xHfxO4F (0 ≤ x ≤ 0.1), and similar to Scheme 2 the larger Ba2+ cation was 

included in these reactions due to the small size of the Hf4+ ion. Stoichiometric amounts 

of the dry and pure starting materials were weighed and thoroughly ground together using 

an agate mortar and pestle: strontium carbonate (SrCO3, 99.9%); barium carbonate 

(BaCO3); strontium fluoride (SrF2, 99%); aluminum (III) oxide (Al2O3); hafnium (IV) 

oxide (HfO2, 99.99%). Following reaction times of 12-16 hours at 700, 800, and 900 °C 

with intermittent grinding before heating for 48-72 hours at 1050 °C for up to three times, 

the compound Sr!.!!!!
Ba!.!Al!!!Hf!O!F  was successfully synthesized. The synthesis 

conditions are adjusted according to the purity of the sample and how receptive the 

materials are to heating at increasingly high temperatures.  

 2− !
!
  SrCO3 + 0.5 BaCO3 + 0.5 SrF2 + !!!

!
 Al2O3 + x HfO2 à 

Sr!.!!!!
Ba!.!Al!!!Hf!O!F 

Scheme 4. Synthesis of Sr!.!!!!
Ba!.!Al!!!Hf!O!F 
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CHAPTER III 

CHARACTERIZATION OF SYNTHESIZED MATERIALS 

Generation of X-Rays 

X-rays are a type of electromagnetic radiation with a wavelength between 0.01 

nm to 10 nm, and how this radiation interacts with a specific compound allows for its 

structural analysis. When X-rays interact with matter they can either scatter coherently 

(elastic scattering), incoherently (inelastic scattering), or be absorbed. Elastic scattering 

means the X-ray hits the electron cloud of the material and recoils with the same energy 

and wavelength; inelastic scattering results in loss of energy, so the scattered X-ray has a 

lower energy than the incident X-ray.  

Superposition of waves results in interference patterns depending on whether the 

waves are in or out of phase. There are two types of interference, constructive and 

destructive. Constructive interference occurs when waves are in-phase, resulting in 

amplifications of the waves which can be detected and analyzed. Destructive interference 

results in an amplitude of zero because the waves are out of phase when the material 

being analyzed diffracts the X-rays, and this causes systematic absences if the lattice type 

is body-centered or face-centered, or if certain elements of symmetry are present.  

X-rays are generated by bombarding electrons that excite an n= 1 (K shell) 

electron to a higher unoccupied state, leaving a vacancy in the K shell. Electrons in the 

n= 2 or 3 (L or M shell) are able to make a transition into the K shell, emitting X-rays. 
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Transitions from the n= 2 (L) shell to the n= 1 (K) shell gives rise to the Kα line; 

transitions from the n= 3 (M) shell to the n= 1 (K) shell gives rise to the Kβ line. The Kα 

line consists of two lines (Kα1 and Kα2) resulting from two L to K transitions; these 

emissions have similar energy but differ only due to the spin multiplicity of the 2p 

electrons.73 The production of copper Kα X-rays is shown in Figure 21 as the X-ray 

powder diffractometer used for analysis uses a Cu radiation source. This is a good 

wavelength for diffraction studies, resulting in strong scattering and good peak 

resolution.  

 

Figure 21. Generation of X-rays. Reproduced from Shimadzu49 

 

Bragg’s Law 

X-rays interacting constructively after diffracting the material being analyzed 

meet the Bragg reflection conditions, represented visually in Figure 22 and defined in 

equation 2, known as Bragg’s law: 

2dhklsinθ = nλ 

Equation 2. Bragg’s Law derivation  
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As long as the wavelength (λ) and angle	
  (θ) are known, Bragg’s law can be used 

to determine the interplanar spacing, dhkl, and therefore determine the atomic positions 

and lattice parameters. When a known structure is changed in any way, such as the 

introduction of dopant ions as in this thesis, the lattice parameters should vary and these 

differences can be calculated. The order of diffraction, n, is an integer and indicates the 

difference in path length between the two scattered X-rays.   

 

Figure 22. Schematic of the Bragg reflection. Adapted from Smart73  

 

The interplanar spacing, dhkl, is the spacing between planes of atoms, or Miller 

planes. Miller indices, calculated as h, k, and l, are used to describe a plane in the unit cell 

in the x, y, and z directions that intercept at some part of the unit cell at a, b, and c. Thus, 

the resulting Miller indices are calculated for a single plane in equations 3.1-3.3, 

followed by the interplanar spacing of a cubic crystal in equation 4.1, and equation 4.2 

shows how to calculate dhkl of a tetragonal crystal:  

ℎ =   
𝑎
𝑥 

Equation 3.1. Calculating interplanar spacing, dhkl, of h 
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𝑘 =   
𝑏
𝑦 

Equation 3.2. Calculating interplanar spacing, dhkl, of k 

𝑙 =
𝑐
𝑧 

Equation 3.3. Calculating interplanar spacing, dhkl, of l  

𝑑! =   
𝑎!

ℎ! + 𝑘! + 𝑙! 

Equation 4.1. Calculating interplanar spacing of a cubic crystal 

𝑑! =   
𝑎!

ℎ! + 𝑘! +   
𝑐!

𝑙!  

Equation 4.2. Calculating interplanar spacing of a tetragonal crystal 

 

Powder X-Ray Diffraction (PXRD) 

To analyze the anti-perovskite materials synthesized PXRD is used and this 

technique allows for the characterization of materials since the electron cloud inherently 

scatters X-rays. The number of electrons an atom has is proportional to the form factor, 

f0, or the scattering power of each atom, this form factor is responsible for the decreasing 

intensity of the reflection as the scattering angle (2θ) is increased. Although the X-ray 

scattering is distinctive for each atom, PXRD is not the best for differentiating between 

adjacent atoms on the periodic table or atoms with low atomic numbers.  

Figure 23 shows the Rigaku MiniFlexTM 600 Powder X-Ray Diffractometer used 

for analysis of each compound. This PXRD uses a copper anode to emit X-rays at 1.5418 

Å, a favorable wavelength for the crystal size of the reagents and products being 

analyzed. The Kβ filter, nickel in this case, is used to remove the Kβ X-rays. The Kα1 and 
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Kα2 X-rays can be separated, but this PXRD does not have a monochromator that can 

separate the two. The divergent Soller slits help to further filter the incident and reflected 

X-rays for a higher resolution. Another commonly used anode is molybdenum, which 

emits X-rays at 0.71 Å, which is commonly used for single crystals; a zirconium filter is 

commonly used with when molybdenum is used to produce the X-rays.50 

  

Figure 23. A labeled view inside of the Rigaku MiniFlexTM 600 PXRD  

 

Neutron Powder Diffraction (NPD) 

Another technique for analyzing powders and crystals is through neutron powder 

diffraction (NPD) and this offers a few advantages over PXRD. This technique is based 

on the same principles of PXRD, but NPD uses a nuclear reactor for an intense source of 

neutrons that then come into contact with the nucleus of an atom. This offers a true 

distance for bond lengths between nuclei, thus is a higher resolution because the atomic 

positions are determined very accurately. NPD does require a larger sample size since 
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neutrons have a low flux, but there is no drop off in intensity	
   with 2θ which is an 

advantage over PXRD. Neutron scattering form factors vary irregularly with atomic and 

mass numbers, allowing for greater detection between adjacent elements in most cases; 

NPD can even be used to differentiate between different isotopes or to determine the 

magnetic structure.51 NPD data for this thesis were collected at the Australian Nuclear 

Science and Technology Organization (ANSTO) in Sydney, Australia by Dr. Maxim 

Avdeev on the high-resolution neutron diffractometer Echidna that includes a Ge 

monochromator to select a wavelength of 1.6215 Å.  

 

Profile Refinement 

 The data collected from PXRD and NPD can be analyzed through Rietveld 

refinement, a technique originating in the late 1960s that allows for the structural analysis 

of said compound. Data collected from powder diffraction are compared to a calculated 

fit for the specific structure based on where scattering would take place.52-55 The 

refinement package used for the data presented in this thesis is GSAS, Generalized 

Structure and Analysis Software, which is used in conjunction with EXPGUI, 

Experiment Graphical User Interface, as shown in Figure 24.56 Using the various tabs 

allow for a least squares refinement to calculate atomic parameters, background, phase 

fractions, constraints, and model preferred orientation.  
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Figure 24. Screenshot of the EXPGUI interface for GSAS. Reproduced from Toby56  

 
 

 Another major component of GSAS and EXPGUI is the ability to live-plot the 

profile refinements. Figure 25 shows a Rietveld refinement in process, where the red line 

is comprised of data points collected from the powder diffractometer, the green line is the 

calculated fit through least squares analysis, and the pink line is the difference between 

the two; ideally, a straight pink line would arise but minor inflections are expected. As 

this pink line visually indicates the goodness of fit, the number can be quantified as χ2. A 

value of χ2= 1 would be ideal, but this is more of a visualization technique so generally a 

single digit value of χ2 is accepted as a good fit.56 Upon completing the refinement, 

various structural parameters can be refined such as the lattice parameters, atomic 

positions, bond lengths and angles, fractional site occupancies, and thermal parameters.56 
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Figure 25. Rietveld refinement analyzed by E.C. Sullivan for demonstrative laboratory 
purposes 

 

The oxidation state of each atom can be calculated through bond valence sum 

(BVS) calculations. Using the observed bond lengths the individual bond valences, S, are 

calculated in equation 5.1 where R0 is the ideal bond length, Ri is the observed bond 

length (calculated using GSAS), and b is an empirical constant. Typically reported as 

0.37 Å, b can vary from 0.37-0.42 Å based on the bond type.57,58 If the BVS value is 

higher than the formal valence then the structure is overbonded, indicating the ion is too 

large for the site; however, if this value is lower than the formal valence then the 

structure is underbonded, meaning the ion is too small for the site.  

 𝑆 =   exp  (!!!!!
!
) 

Equation 5.1. Calculating the bond valence sums 
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The difference between the expected valence (Vi) and the calculated valence (Sij) 

is reported as di, the discrepancy factor (equation 5.2). Positive values indicate an 

elongation in the bonds by this ion, where a negative value indicates that the bonds are 

compressed. 

𝑑! =    𝑆!" − 𝑉! 

Equation 5.2. Calculating the discrepancy factor  

 

The bond valence sum is also useful to determine the stability of the structure. 

Using the BVS results, the global instability index, G, can be calculated (equation 5.3). If 

G is less than 0.1 it is considered stable, 0.1-0.2 indicates there is strain, and values 

greater than 0.2 are not often reported for stable structures.59 The Sr3AlO4F compound 

comes with a large amount of strain, and published G values have been reported as high 

as 0.25.36,59   

𝐺 = (( 𝑑!
!)/𝑁)

!
! 

Equation 5.3. Calculating the global instability index 

 

Photoluminescence 

The excitation and emission of these materials were analyzed on a Perkin-Elmer 

LS-55 spectrofluorimeter using a fiber optic attachment specifically designed for solid 

materials. The fluorescence spectrometer measures the intensity and wavelength of 

emitted light after excitation by a certain wavelength of light. Excitation and emission 

scans were taken in the ranges of 200-450 nm and 400-800 nm, respectively. 

Photoluminescent data were collected on these materials before and after being treated 
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under reducing conditions to analyze the difference in photoluminescent properties 

between the reduced and unreduced samples as reported by Park and discussed in 

Chapter I, Strontium Aluminum Oxy-fluoride.39 
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CHAPTER IV 

CHARACTERIZATION OF THE NOVEL STRONTIUM ALUMINUM 

OXYFLUORIDE DOPED WITH PHOSPHORUS,  

Sr2.5-xBa0.5Al1-xPxO4F [0 ≤ x ≤ 0.1] 

Single Substitution 

After synthesis of Sr2.5Ba0.5Al1-xPxO4F [0 ≤ x ≤ 0.1], the final products are a white 

polycrystalline solid. The data were gathered for these samples via PXRD with a range of 

2θ= 5-145° at every 0.10 degrees at a rate of 0.20 degrees/minute; this is plotted as 

intensity vs. 2θ and was analyzed through Rietveld refinement to determine the lattice 

parameters, atomic positions, thermal parameters, bond length, and angles. The  

Sr2.5-xBa0.5Al1-xPxO4F structure was confirmed to have an I4/mcm space group even as P5+ 

was incorporated. As the concentration of phosphorus was increased, so did the χ2 values, 

indicating the presence of low levels of impurities that are not discernible from 

background noise in the PXRD data. Using GSAS and EXPGUI, the atomic positions and 

thermal parameters obtained are displayed in Tables 2.1-2.4.  
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Table 2.1. Atomic Positions and Thermal Parameters of Sr2.5Ba0.5AlO4F 
Atom x y z Uiso × 100 

Sr/Ba(1) 0 0 0.25 2.75(2) 
Sr(2) 0.1702(1) 0.6702(1) 0 2.36(2) 

Al 0 0.50 0.25 1.78(6) 
O 0.1412(4) 0.6411(4) 0.6474(3) 2.34(8) 
F 0 0 0 2.57(1) 

Space Group: I4/mcm; χ2= 5.5; a= 6.8571(6) Å; c= 11.1603(3) Å 

Table 2.2. Atomic Positions and Thermal Parameters of Sr2.45Ba0.5Al0.95P0.05O4F 
Atom x y z Uiso × 100 

Sr/Ba(1) 0 0 0.25 2.33(1) 
Sr(2) 0.1703(1) 0.6704(1) 0 2.62(1) 
Al/P 0 0.50 0.25 1.29(1) 

O 0.1435(5) 0.6433(5) 0.6507(9) 3.58(1) 
F 0 0 0 2.63(1) 

Space Group: I4/mcm; χ2= 8.1; a= 6.8752(1) Å; c= 11.1459(3) Å 

Table 2.3. Atomic Positions and Thermal Parameters of Sr2.4Ba0.5Al0.9P0.1O4F 
Atom x y z Uiso × 100 

Sr/Ba(1) 0 0 0.25 0.405(5) 
Sr(2) 0.1724(1) 0.6724(1) 0 0.614(3) 

Al 0 0.50 0.25 0.05(9) 
O 0.1381(1) 0.6381(1) 0.6496(9) 1.06(3) 
F 0 0 0 1.08(7) 

Space Group: I4/mcm; χ2= 16.1; a= 6.8757(1) Å; c= 11.1263(3)  

Table 2.4. Atomic Positions and Thermal Parameters of Sr2.35Ba0.5Al0.85P0.15O4F 
Atom x y z Uiso × 100 
Sr(1) 0 0 0.25 2.68(6) 
Sr(2) 0.1714(2) 0.6717(2) 0 2.92(6) 

Al 0 0.50 0.25 3.88(3) 
O 0.1461(1) 0.6461(1) 0.6707(5) 7.82(5) 
F 0 0 0 3.19(4) 

Space Group: I4/mcm; χ2= 10.5; a= 6.8934(2) Å; c= 11.1201(4) Å. 
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 After the refinements converged, the atomic positions the cell parameters were 

calculated and plotted in Figure 26. While not linear, there is an observable trend as the 

concentration of P5+ is increased. The a parameter is increased by almost 0.50% (from 

6.8571(6) Å to 6.8934(2) Å) while x is increased from 0 to 0.15, but the c parameter 

contracts slightly (from 11.1603(3) Å to 11.1201(4) Å, less than 0.20%) when x is 

increased from 0 to 0.15.  

 

Figure 26. Cell parameters of a and c as [P5+] is increased from 0 to 0.15  
 

The observation that the c parameter contracts as x increases can be rationalized 

by considering the relatively small size of the P5+ ion compared to Al3+ (0.31 Å vs. 0.53 

Å, respectively).46 The bond of interest when doping on the M-site is the Al-O bond, 

which is 1.784(2) Å for the undoped Sr3AlO4F host structure, but as phosphorus is 

incorporated at x= 0.15, this bond length decreases to 1.676(1) Å. Bond lengths are 

reported in Tables 3.1-3.4.  
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Table 3.1. Selected Bond Lengths of Sr2.5Ba0.5AlO4F 
Bond Length (Å) 

8 × Sr(1)-O 2.882(1) 
2 × Sr(1)-F 2.790(3) 
4 × Sr(2)-O 2.702(1) 
2 × Sr(2)-O 2.461(2) 
2 ×  Sr(2)-F 2.545(1) 
4 × Al-O 1.784(2) 

 
Table 3.2. Selected Bond Lengths of Sr2.45Ba0.5Al0.95P0.05O4F 

Bond Length (Å) 
8 × Sr(1)-O 2.865(2) 
2 × Sr(1)-F 2.786(1) 
4 × Sr(2)-O 2.741(3) 
2 × Sr(2)-O 2.469(4) 
2 ×  Sr(2)-F 2.551(4) 
4 × Al-O 1.781(4) 

 
Table 3.3. Selected Bond Lengths of Sr2.4Ba0.5Al0.9P0.1O4F 

Bond Length (Å) 
8 × Sr(1)-O 2.888(6) 
2 × Sr(1)-F 2.782(6) 
4 × Sr(2)-O 2.713(1) 
2 × Sr(2)-O 2.485(1) 
2 ×  Sr(2)-F 2.545(5) 
4 × Al-O 1.747(1) 

 
Table 3.4. Selected Bond Lengths of Sr2.35Ba0.5Al0.85P0.15O4F 

Bond Length (Å) 
8 × Sr(1)-O 2.780(5) 
2 × Sr(1)-F 2.783(3) 
4 × Sr(2)-O 2.903(1) 
2 × Sr(2)-O 2.599(2) 
2 ×  Sr(2)-F 2.553(4) 
4 × Al-O 1.676(3) 

 
Based on the atomic positions, bond lengths, and expected valences the bond 

valence sums and global stability index were calculated, as reported in Tables 4.1-4.3. 

The bond valences for Sr(1) are all less than 2, which is consistent with the literature and 

indicates underbonding. Ba2+ was included to help alleviate structural instability arising 

from the Sr2+ ion being rather small for the 10-coordinate Sr(1) site. The valence of Al3+ 
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is calculated as 2.5657 for x= 0, which increases to 3.4382 when x= 0.15, as was 

hypothesized due to the incorporation of the +5 phosphorus ion.  

Using these values the global stability index value can be calculated, and this 

indicates how much strain there is in the structure. For the undoped compound the G 

value is calculated as 0.31, a high value but one common to the literature value of 

0.25.36,59 As more P5+ is incorporated on the Al3+ site the G value decreases to 0.28 for x= 

0.10, indicating that the introduction of P5+ is relieving some of the strain of the cell. As 

the concentration of P5+ is increased, the underbonded Al3+ site becomes less 

underbonded (di increases from -0.4343 for x= 0 to -0.1510 for x= 0.10). The structure 

cannot incorporate phosphorus past x= 0.10, most likely due to charge considerations and 

steric hindrances.  Impurities arise after this concentration because any phosphorus not 

successfully incorporated into the cell can cause phosphorus-containing impurities or 

appear as the unreacted starting material. Often times these impurities form before the 

successful synthesis of the cell, meaning there are not enough starting materials to form 

the cell of interest.  

Table 4.1. Bond Valence Sums and Global Stability Index of Sr2.5Ba0.5AlO4F 
Atom Vi Sij di 

Sr(1)/Ba(1) 2 1.2489 -0.7511 
Sr(2) 2 2.0697 0.0698 

Al 3 2.5657 -0.4343 
O 2 1.7034 -0.2966 
F 1 1.1404 0.1405 

G 0.31 
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Table 4.2. Bond Valence Sums and Global Stability Index of Sr2.45Ba0.5Al0.95P0.05O4F 
Atom Vi Sij di 

Sr(1)/Ba(1) 2 1.2977 -0.7023 
Sr(2) 2 1.9641 -0.0359 
Al/P 3 2.5887 -0.4113 

O 2 1.6715 -0.3285 
F 1 1.1287 0.1287 

G 0.29 
 

Table 4.3. Bond Valence Sums and Global Stability Index of Sr2.4Ba0.5Al0.9P0.1O4F 
Atom Vi Sij di 

Sr(1)/Ba(1) 2 1.2350 -0.7650 
Sr(2) 2 1.8770 -0.1230 
Al/P 3 2.8490 -0.1510 

O 2 1.7320 -0.2860 
F 1 0.9110 -0.0890 

G 0.28 
 

Table 4.4. Bond Valence Sums and Global Stability Index of Sr2.35Ba0.5Al0.85P0.15O4F 
Atom Vi Sij di 

Sr(1)/Ba(1) 2 1.5750 0.4250 
Sr(2) 2 1.4685 0.5315 
Al/P 3 3.4382 -0.4382 

O 2 1.7059 0.2941 
F 1 1.1266 -0.1266 

G 0.29 
 

If phosphorus were to be successfully incorporated into the cell at higher 

concentrations, I would expect the volume of the cell to continue to decrease, but with no 

further outcomes such as a structural change. The Goldschmidt tolerance factor 

calculation with Al3+, and P5+ results in a t value greater than one, and due to the smaller 

size of P5+ compared to Al3+, it is reasonable that this would result in a larger 

Goldschmidt tolerance factor; as the A ion increases with size (in this case Sr2+ remains 

constant) or the B ion decreases in size (from 0.39 Å for Al3+ to 0.17 Å for P5+) the t 

value increases, but with values over 1.0 for each calculation both perovskites would 

appear to be hexagonal in nature according to the Goldschmidt tolerance factor. 

However, the Sr3AlO4F anti-perovskites are tetragonal, so as stated previously the 
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Goldschmidt tolerance factor should only be used as a guideline and not a determining 

factor.  

The Rietveld refinements, Figures 27.1-27.4, are plotted to include thousands of 

calculated points gathered from PXRD or NPD (in red), a green line which is the 

calculated values, and a pink line at the bottom which is the difference between these 

two; as χ2 nears 1 (the best possible χ2 value), the pink line becomes more linear. 
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Figure 27.1. Rietveld refinement based upon PXRD data for Sr2.5Ba0.5AlO4F  



www.manaraa.com

 
 

55 

 
Figure 27.2. Rietveld refinement based upon PXRD data for Sr2.45Ba0.5Al0.95P0.05O4F  



www.manaraa.com

 
 

56 

 
Figure 27.3. Rietveld refinement based upon NPD data for Sr2.4Ba0.5Al0.9P0.1O4F 
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Figure 27.4. Rietveld refinement based upon PXRD data for Sr2.35Ba0.5Al0.85P0.15O4F 
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 Data for Sr2.5-xBa0.5Al1-xPxO4F (x= 0, 0.05, 0.15) were collected via PXRD. Dr. 

Maxim Avdeev collected NPD data for Sr2.4Ba0.5Al0.9P0.1O4F at the Australian Nuclear 

Science and Technology Organization (ANSTO) in Sydney, Australia; this technique 

allows for higher resolution than PXRD. Figure 28.3 displays black lines under the 

refinement that indicate where the expected peaks for the main phase would appear 

(Sr3AlO4F); the red lines are indicative of the main impurity, AlF3, which is present in a 

1.86% phase fraction compared with the main phase. The atomic positions and thermal 

parameters for the aluminum fluoride impurity are recorded in Table 5. Aluminum 

fluoride is acceptable as an impurity because it is not an impurity containing the dopant 

of interest and it did not disrupt the target unit cell from forming. Modeling this impurity 

helps to ensure that the atomic parameters of the unit cell were calculated correctly.  

Table 5. Atomic Positions and Thermal Parameters of AlF3 in Sr2.4Ba0.5Al0.9P0.1O4F60 

Atom x y z Uiso × 100 

Al 0.4205(3) 0.2829(2) 0 1.26(6) 
Al 0.5 0 0 1.26(6) 
F 0.3585(2) 0.4333(3) 0 0.26(6) 
F 0.5049(2) 0.1568(3) 0 0.26(6) 
F 0.4264(2) 0.2950(3) 0.5 2.51(9) 
F 0.2839(3) 0.2162(3) 0 0.26(6) 
F 0.5 0 0.5 2.51(9) 

Space Group: P4/mbm; a= 11.588(6) Å; c= 3.550(4) Å  

 

Photoluminescence 

Photoluminescence data were collected on these phosphorus doped samples (x= 

0.05, 0.10) before and after being treated in reducing conditions. Before being reduced an 

excitation of ~214 nm results in a broad emission with a λmax of ~454 nm, as seen in 

Figure 28.1.  
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Figure 28.1. Excitation and emission spectra of Sr2.5-xBa0.5Al1-xPxO4F (not reduced) 

 

Reduced samples were prepared by post-synthesis annealing at 900 ̊C for one 

hour with a flow rate for 3%H2(g)/97%N2(g) of four seconds per bubble. No 

photoluminescence was observed for these samples. Reducing Sr2.5-xBa0.5Al1-xPxO4F 

under these conditions destroyed the previously observed photoluminescence in these 

samples. Another batch of unreduced samples were then reduced under a milder set of 

conditions, 800 ̊C for 30 minutes with the same flow rate for 3%H2(g)/97%N2(g) of four 

seconds per bubble, and the samples prepared using this method still exhibited 

photoluminescence, as seen in Figure 28.2. An important observation is that the intensity 

of the x= 0.10 sample after post-synthesis annealing is greater than that of x= 0.05, which 

was not the case before reduction. These reduced materials were analyzed via PXRD to 

confirm that the Sr3AlO4F host lattice was still present after annealing under reducing 

conditions, and it was in all cases.  
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Figure 28.2. Excitation and emission spectra of Sr2.5-xBa0.5Al1-xPxO4-αF1-δ  (reduced)  

 
 

The CIE coordinates for the emissions were generated for the samples after being 

reduced, Table 6, and plotted in the blue region on the color space diagram, Figure 29. 

As the concentration of phosphorus is increased, the x and y CIE values are also 

increasing, moving slightly towards the white region of the color space. While the 

observed change is relatively minor, this speaks to the potential tunability of solid state 

lighting systems using phosphorus as a dopant. 
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Table 6. CIE x and y Coordinates of Sr2.5-xBa0.5Al1-xPxO4-αF1-δ (x= 0, 0.05, 0.10) 

Compound x y 

(a) Sr2.5Ba0.5Al1O4F 0.2189 0.2424 

(b) Sr2.45Ba0.5Al0.95P0.05O4F 0.2218 0.2495 

(c) Sr2.4Ba0.5Al0.9P0.1O4F 0.2269 0.2571 

 

 
Figure 29. CIE plot of Sr2.5-xBa0.5Al1-xPxO4-αF1-δ 
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Double Substitution 

 Further doping on Sr3Al0.9P0.1O4F was investigated with the introduction of Zn2+, 

following the work of Williams in the 1940s,33 which was briefly discussed in Chapter I, 

Important Phosphor Materials. It was hypothesized that the incorporation of Zn2+ might 

play a role in enhancing the emission spectra without changing the structure of the lattice. 

The same synthesis protocol was used for this procedure, shown in Scheme 5, using 

stoichiometric amounts of the pure, dried starting materials, and following the same 

heating times of 12-16 hours at 700, 800, and 900 °C, respectively, and then 48-72 hours 

at 1050 °C for up to three times with intermittent grinding in an agate mortar and pestle. 

Zn2+ was used at 0.1 equivalents since this was the highest dopable concentration of P5+; 

P5+ was also kept at 0.1, and Na+ was added at a concentration of 0.1 to charge 

compensate for each Zn2+ cation added and therefore not require the formation of any 

vacancies.  

2  SrCO!   +   0.05  Na!CO!   +   0.9  SrF!   +   0.4  Al!O! +   0.1  (NH!)!HPO! +   0.1  ZnO 

à        Sr!.!Na!.!Al!.!P!.!Zn!.!O!F 

Scheme 5. Synthesis of   Sr!.!Na!.!Al!.!P!.!Zn!.!O!F 

 

Analysis of this white polycrystalline powder shows that zinc was not properly 

incorporated into the anti-perovskite lattice. An integrated X-ray powder diffraction 

software (PDXL) was used to determine what phases are present in the given compound; 

PDXL generates figures of merit based on how well the observed peaks match up with 

the expected peaks; as this value approaches 1 this indicates a better match. The 

Sr3AlO4F lattice was not present, and of the three main phases, one of the impurities 
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contained zinc (gahnite), while all three of the impurities contained aluminum. These 

impurities are possibly due to the number of starting materials used. High temperature 

solid state synthesis typically uses the smallest number of starting materials possible, 

disallowing any side reactions to occur and generate impurities before the synthesis of the 

hypothesized host lattice. Information about the main impurities (Al2O3, gahnite 

(Al2O4Zn), and AlF3)61,62,60 is shown in Table 7 and plotted in Figure 30.   

Table 7.   Sr!.!Na!.!Al!.!P!.!Zn!.!O!F Impurity Phases from PDXL  
Formula FOM Space Group Lattice Parameters (Å) 

Al2O3 1.664 C2/m a= 11.795(5) 
b= 2.910(1) 
c= 5.621(2) 

Al2O4Zn 1.589 𝐹𝑑3𝑚 a= 8.091(5) 
b= 8.091(5) 
c= 8.091(5) 

AlF3 1.739 P4/mbm a= 11.403(4) 
b= 11.403(4) 
c= 3.544(1) 
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Figure 30. PXRD pattern for attempted synthesis of   Sr!.!Na!.!Al!.!P!.!Zn!.!O!F  
showing peaks for main phases present 
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CHAPTER V  

CHARACTERIZATION OF THE STRONTIUM ALUMINUM  

OXYFLUORIDE UPON DOPING WITH YTTRIUM 

 Yttrium was chosen as a dopant due to the isovalent nature compared to 

phosphorus, but one concern was the steric hindrance due to the Y3+ ion being larger than 

the Al3+ ion (1.04 Å vs 0.53 Å).46 Considering this large size difference, Ba2+ was not 

included for these syntheses. The doping range for Y3+ was broader than that of P5+; 

while 0 ≤ x ≤ 0.1 was investigated, 0 ≤ x ≤ 1 was primarily investigated to see if yttrium 

would completely replace aluminum in the Sr3AlO4F compound. A structurally related 

compound with YO4
5- polyhedra has not yet been reported in the literature, so the doping 

concentration was investigated as high as x= 1 to discover whether a pure Sr3YO4F phase 

was possible.   

 After gathering PXRD data, an integrated X-ray powder diffraction software 

(PDXL) was used to determine what phases are present in the given compound. Y3+ was 

not found to incorporate into the Sr3AlO4F lattice, but information on phases observed 

and their peak positions and intensities can be evaluated before starting Rietveld 

refinements. Since Y3+ was not shown to incorporate into the lattice, many impurities 

were generated during the reaction. As opposed to Rietveld refinements, Figures 31.1-

31.4 are shown to indicate the powder diffraction and a few impurity phases. These 

figures encompass the compounds with Y3+ concentrations of x= 0.25, 0.50, 0.75, and 
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1.0, the phase views for 0 ≤ x ≤ 0.1 are included in Appendix A. A few of the impurities 

seen are the starting materials (SrF2) or their immediate byproducts (SrO from 

decomposing SrCO3). The other “impurities” are called such because they are the phases 

being generated though this synthesis, not the products hypothesized. Tables 8.1-8.4 

show the main impurities seen as well as their space group and their figure of merit, 

FOM.  

Table 8.1. Sr3Al0.75Y0.25O4F Impurity Phases from PDXL63,64,65 
Formula FOM Space Group Lattice Parameters (Å) 

Sr1.7Y1.2F7 1.364 Not determined, 
seen as a 

byproduct 

n/a 

SrY2O4  1.804 Pnam a= 10.090* 
b= 11.901* 
c= 3.412* 

YAlO3 2.106 Pbnm a= 5.330(2)  
b= 7.375(2) 
c= 5.180(2) 

*Standard deviation not reported  
 

Table 8.2. Sr3Al0.5Y0.5O4F Impurity Phases from PDXL60,66,67,68 
Formula FOM Space Group Lattice Parameters (Å) 

AlF3 1.333 P4/mbm a= 11.403(4) 
b= 11.403(4) 
c= 3.544(1) 

Al2Y 1.460 𝐹𝑑3𝑚 a= 2.368* 
b= 2.777* 
c= 4.535* 

YOF 1.570 Pmnb a= 3.096* 
b= 1.896* 
c= 1.617* 

Sr6Y2Al4O15 1.677 C2 a= 17.597(1) 
b= 5.741(1) 
c= 7.686(1) 

*Standard deviation not reported  
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Table 8.3. Sr3Al0.25Y0.75O4F Impurity Phases from PDXL69,64,70 
Formula FOM Space Group Lattice Parameters (Å) 

SrO 0.703 𝐹𝑚3𝑚 a= 5.159* 
b= 5.159* 
c= 5.159* 

SrY2O4  0.823 Pnam a= 10.090* 
b= 11.901* 
c= 3.412* 

SrF2 1.095 𝐹𝑚3𝑚 a= 5.800(3) 
b= 5.800(3) 
c= 5.800(3) 

*Standard deviation not reported  

Table 8.4. Sr3YO4F Impurity Phases from PDXL71,68,72 
Formula FOM Space Group Lattice Parameters (Å) 

Y3Al2(AlO4)3 1.387 𝐼𝑎3𝑑 a= 2.689(4) 
b= 4.909(1) 
c=1.667(3) 

Sr6Y2Al4O15 1.542 C2 a= 17.597(1) 
b= 5.741(1) 
c= 7.686(1) 

Sr7Y6F30O 1.642 𝑅3𝐻 a= 14.498(2) 
b= 14.498(2) 
c= 9.926(1) 
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Figure 31.1. PXRD pattern for attempted synthesis of Sr3Al0.75Y0.25O4F 
showing peaks for main phases present  
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Figure 31.2. PXRD pattern for attempted synthesis of Sr3Al0.5Y0.5O4F 
showing peaks for main phases present 
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Figure 31.3. PXRD pattern for attempted synthesis of Sr3Al0.25Y0.75O4F 
showing peaks for main phases present 
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Figure 31.4. PXRD pattern for attempted synthesis of Sr3YO4F 

showing peaks for main phases present 
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CHAPTER VI 

CHARACTERIZATION OF THE NOVEL STRONTIUM ALUMINUM 

OXYFLUORIDE DOPED WITH HAFNIUM,  

Sr!.!!!!
Ba!.!Al!!!Hf!O!F [0 ≤ x ≤ 0.1] 

Synthesis and Characterization 

Following the standard heating as discussed in Chapters IV & V, the Sr3AlO4F 

host lattice was successfully doped with a small amount of Hf4+, yielding the white 

polycrystalline compound Sr2.4875Ba0.5Al0.975Hf0.025O4F. The data were gathered for this 

sample via PXRD with a range of 2θ= 5-145° at every 0.10 degrees at a rate of 0.20 

degrees/minute; the data were then analyzed through Rietveld refinement to determine 

the lattice parameters, atomic positions, thermal stability, bond length, and valences. The 

Sr2.4875Ba0.5Al0.975Hf0.025O4F structure was confirmed to have an I4/mcm space group. 

After completing the Rietveld refinement, Figure 32, the atomic positions and thermal 

parameters were calculated using GSAS and EXPGUI and are displayed in Table 9, the 

bond lengths were calculated for Table 10, and the bond valence sums were calculated to 

determine the global stability index as shown in Table 11.  
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Table 9. Atomic Positions and Thermal Parameters of Sr2.4875Ba0.5Al0.975Hf0.025O4F 
Atom x y z Uiso × 100 

Sr(1)/Ba(1) 0 0 0.25 0.844(4) 
Sr(2) 0.1689(0) 0.6689(0) 0 0.570(7) 
Al/Hf 0 0.50 0.25 2.11(9) 

O 0.1410(0) 0.6410(0) 0.6452(0) 1.26(0) 
F 0 0 0 2.93(7) 

Space Group: I4/mcm; χ2= 6.8; a= 6.8606(1) Å; c= 11.1682(5) Å 
 

Table 10. Selected Bond Lengths of Sr2.4875Ba0.5Al0.975Hf0.025O4F 
Bond Length (Å) 

8 × Sr(1)-O 2.893(5) 
2 × Sr(1)-F 2.792(8) 
4 × Sr(2)-O 2.681(4) 
2 × Sr(2)-O 2.456(4) 
2 ×  Sr(2)-F 2.550(4) 
4 × Al-O 1.800(3) 

 
Table 11. Bond Valence Sums and Global Stability Index of Sr2.4875Ba0.5Al0.975Hf0.025O4F 

Atom Vi Sij di 
Sr(1)/Ba(1) 2 1.2168 -0.7832 

Sr(2) 2 2.1229 0.1229 
Al/Hf 3 2.4578 -0.5422 

O 2 1.6982 -0.3018 
F 1 1.1275 0.1275 

G 0.34 
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Figure 32. Rietveld refinement based upon PXRD data for Sr2.4875Ba0.5Al0.975Hf0.025O4F 
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Hafnium was not able to incorporate onto the M-site at higher concentrations. 

Increasing concentrations of Hf4+ led to more impurities but these impurities did not 

revolve around hafnium, which would indicate that this dopant was successfully being 

incorporated into the host lattice. The impurities that arose were most commonly SrF2 or 

SrO, suggesting Hf4+ may be incorporating on the strontium (A) site and not the 

aluminum (M) site as hypothesized. The Hf4+ ion is larger than the Al3+ ion (0.58 Å vs 

0.39 Å, respectively)46 but this should not disallow Hf4+ from incorporating on this site; 

compared to the Sr2+ ion, which is about twice as large as the Hf4+ ion, it would be able to 

incorporate onto the strontium site even with the addition of barium.  

The global instability index is also an indication of how Hf4+ may be 

incorporating onto the strontium site. Introducing Hf4+ onto the strontium site would 

result in more strain on these crystals that already have a high level of strain, rationalizing 

a G value that is higher than what is typical for these crystals.  

 For the samples of Sr!.!!!!
Ba!.!Al!!!Hf!O!F synthesized where x= 0.05, 0.075, 

and 0.1 the refinements were constrained to allow disorder on both the A and M sites to 

determine where the Hf4+ is bonding during synthesis. As the concentration increased, the 

fractional amount of Hf4+ on the Al3+ site was decreasing while increasing on the Sr(1) 

site. The two median concentrations seemed to incorporate hafnium on both sites, but the 

amount of impurities and strain on the cell did not lead to worthwhile refinement of these 

compounds. At the highest concentration of Hf4+ [x= 0.1] when fractionalizing the 

amount of Hf4+ on the A or M sites, the peak positions and intensities had a more 

acceptable goodness of fit value (χ2) when fully introduced on the A site as opposed to the 
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M-site as targeted, further supporting the new hypothesis of Hf4+ incorporating onto the 

Sr(1) site.  

Photoluminescence 

 Upon synthesis there was not an observable photoluminescence for these 

materials. To induce photoluminescence the samples were annealed using a slightly 

milder set of reducing conditions than in Chapter IV, Photoluminescence: 800 ̊C for 60 

minutes with a flow rate for 3%H2(g)/97%N2(g) of four seconds per bubble; this method 

induced photoluminescence in all of the Hf4+doped samples. Post-reduction the samples 

were analyzed via PXRD to determine if the Sr3AlO4F host lattice was still present, 

which it was in all cases. All samples showed a broad emission centered around 445 nm 

with an excitation near 250 nm. These materials would be a good fit for a host lattice for 

PC-LEDs because of the broad emission seen across ~415-600 nm, resulting in a net 

white emission, as seen on the CIE plot. These excitation and emission bands are shown 

in Figure 33, whereas Figure 34 shows how these values correspond to the 1931 color 

space diagram for the Sr2.4875Ba0.5Al0.975Hf0.025O4-αF1-δ sample (x= 0.2323, y= 0.3110).  

 Photoluminescence data were collected for various synthesized materials even 

though the higher concentrations have more strontium impurities due to the Hf4+ being 

incorporated onto the Sr2+ site. This can be seen by the lower concentrations having a 

slightly higher intensity than the samples with a higher concentration of Hf4+. While it is 

possible that this could be the result of concentration quenching, most dopants can be 

introduced up to x= 0.1; however, due the non-stoichiometric nature of these compounds 

because of the strontium impurities, this may not be the case. With a weak intensity 

overall, adjusting the starting materials to the appropriate stoichiometric amounts may 
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lead to a brighter emission and another option for solid state lighting. Note the y axis 

(intensity) for these samples is set at 100 but the maximum intensity is 57, whereas the 

intensity in Figure 28.1 and Figure 28.2 is well over 300. Future work with the 

appropriate stoichiometric amounts of starting materials for the introduction of Hf4+ on 

the Sr2+ site would follow Scheme 6. Further investigation of doping Hf4+ on this cell 

could also be carried out where A= Ba or Ca and where M= Ga instead of Al. 

2.5-2x SrCO3 + 0.5 SrF2 + x HfO2 + Al2O3 à Sr3-2xHfxAlO4F  

Scheme 6. Synthesis of Sr3-2xHfxAlO4F 

 

 
Figure 33. Excitation and emission spectra of Sr!.!!!!

Ba!.!Al!!!Hf!O!!!F!!!  
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Figure 34. CIE plot of Sr2.4875Ba0.5Al0.975Hf0.025O4-αF1-δ  
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH REGARDING  

THESE NOVEL PHOSPHOR MATERIALS 

 The primary concluding work of this thesis is the successful incorporation of 

phosphorus onto the M-site in the Sr3AlO4F host lattice up to 0.10 equivalents. After 

analysis through PXRD or NPD and characterization though Rietveld refinement with 

EXPGUI & GSAS, no major impurities were present in the Sr2.5Ba0.5AlO4F or 

Sr2.45Ba0.5Al0.95P0.05O4F products, but a small (2%) impurity of AlF3 was present in the 

Sr2.4Ba0.5Al0.9P0.1O4F sample. These samples were shown to be photoluminescent 

materials when excited at 214 nm, emitting at a wavelength near 454 nm; the excitation 

and emission values are comparable to those in the literature, meaning that this phosphor 

could be useful if incorporated into a PC-LED. Also, incorporation of P5+ on the M site is 

one of the few aliovalent metals to be substituted on this site, joining Si4+ and Ge4+.45 

After being reduced for 1 hour at 900 °C in a 3% H2(g)/97% N2(g) environment, the 

samples did not show any photoluminescence. When reduced under the milder reducing 

conditions of 30 minutes at 800 °C, photoluminescence was induced, and the samples 

were shown to have a broad emission around 450 nm when excited at 214 nm.  

 In regards to the Sr3-xAl1-xPxO4F material, future investigation as to the use of 

gallium instead of aluminum would be worthwhile. Both Al3+ and Ga3+ compounds have 

been successfully synthesized as photoluminescent materials, and substituting Ga3+ for 
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Al3+ has been shown to have a shift on the photoluminescence of a given material. On the 

A-site, tuning with Ba2+ and Ca2+ has also shown to impact the observed fluorescence and 

would be a worthwhile investigation.  

 Investigatory research was done on the substitution of the isovalent Y3+ onto the 

Al3+ site, but it did not incorporate into the Sr3Al1-xYxO4F lattice. Concentrations of 

yttrium were increased up to x= 1 due to the yet unreported structure containing a YO4
5- 

tetrahedron. The large size of Y3+ as opposed to P5+ is likely the reason for yttrium not 

incorporating into the lattice. Formation of the Ca3Al-xYxO4F oxyfluoride might be a 

beneficial experiment for trying to incorporate yttrium onto a photoluminescent anti-

perovskite oxyfluoride. Investigating if yttrium incorporates onto the strontium site 

would also be worthwhile as yttrium has the largest ionic radii out of the dopants 

introduced in this thesis; with this it is possible that if Y3+ does successfully incorporate, 

some degree of structural rearrangement may need to take place to allow for this.   

 Hafnium was shown to successfully incorporate into the Sr3AlO4F host lattice on 

the M-site at a lowest concentration of x= 0.025. The optical properties of this material 

show a broad emission between ~410-600 nm when excited at ~251 nm, making this 

material potentially beneficial for PC-LEDs. At higher concentrations of Hf4+, it appears 

to be doping onto the A-site in a disordered fashion, so this would be the first thing to 

investigate. As stated for further investigation of P5+ compounds, substituting Ga3+ for 

Al3+ and the tunability of Ca2+ versus Ba2+ would be a sensible investigation. It might 

also be interesting to explore how photoluminescence is impacted when doped with 

excess amounts of fluorine; this may increase the efficiency of the Hf4+ doped phosphor 

but could also change the structure.    
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APPENDIX A 

PDXL VIEW OF UNREPORTED SAMPLES  

 

 The following figures are data collected via PXRD with 2θ= 5-145° at every 0.10 

degrees at a rate of 0.20 degrees/minute, plotted as intensity vs. 2θ. Sr3AlO4F was 

selected as a reference (Sr3GaO4F for only F.A2) so the corresponding peaks can be 

matched up visually; any impurities for these samples are not reported as these are 

preliminary results or scans used to help verify a variety of conditions such as melting 

temperatures and if a dopant of interest would be worth investigating further. PDXL plots 

are only included for the highest heating of each sample set, the preliminary scans after 

700, 800, 900, and initial 1050° C are not shown. Various samples are not reported based 

on the sample melting or not yielding enough material for proper analysis.  
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Figure A1. Undoped Sr3AlO4F 
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Figure A2. Undoped Sr3GaO4F 
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Figure A3. Sr3AlO4F:Y3+ [x= 0.05] 
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Figure A4. Sr3AlO4F:Y3+ [x= 0.10] 
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Figure A5. Sr3AlO4F:Y3+ [x= 0.15] 
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Figure A6. Sr3AlO4F:Y3+ [x= 0.20] 
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Figure A7. Sr2.5Ba0.5Al0.9Y0.1O4F 
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